Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications


Zero-knowledge (ZK) applications form a large group of use cases in modern cryptography, and recently gained in popularity due to novel proof systems. For many of these applications, cryptographic hash functions are used as the main building blocks, and they often dominate the overall performance and cost of these approaches. Therefore, in the last years several new hash functions were built in order to reduce the cost in these scenarios, including Poseidon and Rescue among others. These hash functions often look very different from more classical designs such as AES or SHA-2. For example, they work natively over prime fields rather than binary ones. At the same time, for example Poseidon and Rescue share some common features, such as being SPN schemes and instantiating the nonlinear layer with invertible power maps. While this allows the designers to provide simple and strong arguments for establishing their security, it also introduces crucial limitations in the design, which affects the performance in the target applications. To overcome these limitations, we propose the Horst construction, in which the addition in a Feistel scheme (x, y) -> (y + F(x), x) is extended via a multiplication, i.e., (x, y) -> (y * G(x) + F(x), x).

Sep 16, 2021
Guest Talk at University of Bergen
Bergen, Norway
Markus Schofnegger
Markus Schofnegger
Cryptography & Privacy

My main research topic is zero-knowledge cryptography, including the design and analysis of cryptographic primitives in this area.